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Abstract: Precision agriculture technology can transform farming related data into useful information,
which may lead to more efficient usage of agricultural resources and increase sustainability.
This paper compares precision agriculture technology with traditional practices in scheduling
fungicide application so as to manage late blight disease in tomato production. The following
three fungicide scheduling strategies were evaluated: a calendar-based strategy, the BlightPro
Decision Support System based strategy (DSS-based strategy), and a strategy that does not involve
fungicide application. The data from field trials and computer simulation experiments were used to
construct distributions of the net return per acre for the calendar-based and the DSS-based strategies.
These distributions were then compared using three standard approaches to ranking risky alternatives,
namely: stochastic dominance, stochastic dominance with respect to a function, and stochastic
efficiency with respect to a function. Assuming no yield differences between the calendar-based and
the DSS-based strategies, the calendar-based strategy was preferred for highly late blight susceptible
cultivars, and the DSS-based strategy was preferred for moderately susceptible and moderately
resistant cultivars. Assuming no yield differences, the value of the BlightPro Decision Support System
ranged from −$28 to $48 per acre. With the yield improvement for the DSS-based strategy included,
the DSS-based strategy was preferred for the cultivars in all of the disease-resistance categories with
the value ranging from $496 to $1714 per acre.

Keywords: risk analysis; tomato; precision agriculture; stochastic dominance; stochastic efficiency
with respect to a function; disease management; late blight; decision support system

1. Introduction

To solve global food challenges, both agricultural efficiency and productivity need to be improved.
The development of precision agriculture technology is one of the most promising ways to raise
farming efficiency and achieve environmental, social, and economic sustainability [1]. The major focus
of precision agriculture in the United States has been on corn, soybeans, and other major cereal crops.
High value vegetable crops have historically received less attention in this area [2]. Unlike cereal
crops, even a minor disease outbreak can negatively impact the yield and profitability for high value
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vegetable crops. Thus, producers must vigilantly monitor pests and diseases to mitigate production
and financial risks. This research evaluates the economic benefits of a weather-related precision
agriculture technology designed for managing late blight disease in tomato and potato production.
Economic studies of precision agriculture technology can reveal the advantages and potential barriers
for adoption [3].

Late blight disease, caused by Phytophthora infestans (Mont.) de Bary, is a highly economically
damaging pathogen for tomatoes and potatoes. The pathogen is easily dispersed and the disease can
spread rapidly [4]. The development of the disease is heavily influenced by the weather, with humid
and cool (16–21 ◦C) climates stimulating disease development [5–7]. However, growers have
difficulty recognizing the subtle relationships between the weather and the threat of disease outbreak.
Without access to relevant and timely information regarding the danger of an outbreak, growers cannot
make informed late blight management decisions. As a result, tomato production is subject to
significant potential production losses, as a result of late blight disease. Meanwhile, the United States
produced 13 million tons of tomatoes in 2016, making it the world’s third largest producer of tomatoes
after China and India [8]. Tomato production contributes more than $2 billion in farm income
in the United States [9]. Tomato growers typically manage late blight disease using preventative
fungicide applications on a regular calendar basis (e.g., weekly) throughout the growing season.
These preventative applications cover the crop with fungicide, providing protection from the disease.
However, this application method applies fungicide independent of weather and late blight infection
risks. As a result, this application method might cause an inefficient use of fungicide, which is neither
environmentally nor economically sustainable.

To improve late blight management, various decision support systems and late blight forecast
systems have been developed [5,10–12]. The BlightPro Decision Support System (hereafter referred to
as simply BlightPro), developed by researchers at Cornell University, transforms local weather data into
useful information for guiding decision-making in fungicide applications [11]. BlightPro recommends
timely fungicide applications for potato and tomato, taking into account local weather conditions,
the characteristics of the late blight pathogen, the host plants’ susceptibility to late blight, and the
fungicide efficacy [11]. Small et al. [13] examined the usage of BlightPro for potato production,
concluding that the DSS-based strategy maintained or improved disease suppression and fungicide use
efficiency, relative to a calendar-based strategy. Liu et al. [14] further examined the impacts of BlightPro
on potato yield, fungicide cost, revenue, and risk-adjusted net return. They found that, in addition
to improving the input usage efficiency, BlightPro can also boost productivity, increase profitability,
and reduce the variability of income and profit for potato production [14]. By reducing the overall
number and improving the timing of fungicide applications, BlightPro results in more sustainable
potato production. However, the economic effects of BlightPro on tomato production still remain an
open question.

This research examines the impacts of the adoption of BlightPro, relative to a calendar-based
strategy, on the net return and risk for tomato growers. The risks considered are the impact on
profitability associated with weather conditions, yields, and input and output prices for tomato.
These analyses use two datasets, including tomato field trial data and computer simulation experiments
data. The tomato field trial data is conducted in North Carolina, and computer simulation experiments
have been simulated for 14 years in 25 locations in New York and North Carolina. We constructed
the distributions of the net return per acre, which is the gross revenue minus the costs of fungicide
and its application, for the calendar-based and DSS-based strategies at each location. The other
costs of growing tomatoes are assumed not to vary with the weather in late blight incidence
and among the different management strategies. These distributions are compared using three
risk management methods, namely: stochastic dominance, stochastic dominance with respect to a
function, and stochastic efficiency with respect to a function. The objective of this research is to
identify the risk-efficient strategies between BlightPro recommended late blight disease management
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strategy, and the traditional, calendar-based disease management strategy for tomato production.
More specifically, this research evaluates the economic benefits of BlightPro for tomato growers.

2. Materials and Methods

2.1. BlightPro Decision Support System and Field Trial Evaluation

BlightPro is an internet-based application available on the USAblight website (http://usablight.
org). It was developed provide crop protection strategies in order to manage late blight disease
for tomato and potato crops throughout the growing season [11,13]. BlightPro recommends
precise, timely fungicide applications in response to weather conditions, late blight pathogen type,
host resistance, and fungicide characteristics and efficacy. It accesses weather data from the nearest
weather station for a given field, and uses the current and forecasted weather information as an input
to a late blight disease simulator and disease forecasting tools. BlightPro uses a specific disease severity
index to trigger a fungicide application recommendation. The same index and trigger value is used
for tomato and potato crops. An alert system notifies the user of impending critical thresholds for
fungicide intervention via text or e-mail, when weather conditions are conducive for the development
of late blight.

Tomato field trials were conducted in 2015 at the Mountain Horticultural Crops Research and
Extension Center in Mills River, North Carolina. The trials were designed to evaluate the performance
of BlightPro in managing tomato late blight disease. The data collected included the disease severity,
the timing of applications, number of fungicide applications, and tomato yields for two tomato
cultivars, with one susceptible cultivar (Mountain Fresh Plus) and one moderately resistant cultivar
(Legend) to late blight. The trials used four replications in a randomized complete block design with
split plots to accommodate the two cultivars used (see Figure 1). Three treatments were used, namely:
the calendar-based strategy (seven-day spray schedule), DSS-based strategy (BlightPro Decision
Support System based strategy), and unsprayed control (no fungicide application). Each plot was
20′ long and 25′ wide, and was composed of two experimental rows bordered on both sides by one
untreated ‘guard’ row to prevent fungicide drift. An additional guard row was included between the
two cultivars of each plot. Ten feet separated the two experimental rows within a plot, and fifteen
feet separated the experimental rows between each plot. Each experimental row contained 14 plants,
at 18′′ spacing in raised beds, covered with 1.5 millimeter polyethylene black plastic.

Four-week-old tomato seedlings were transplanted into fumigated soil on 9 June and a protectant
fungicide with an active ingredient, chlorothalonil, was sprayed at starting on 12 June. Because of a
miscommunication, both Mountain Fresh Plus and Legend were sprayed according to the BlightPro
recommendations for Mountain Fresh Plus until late in the season. For this reason, the results for the
Legend are not discussed in this paper, and all of the results are for Mountain Fresh Plus.

Thirteen foliar applications were made to the calendar-based strategy. Eleven foliar applications
were made under the DSS-based strategy. The plots were harvested three times during the season
and the total culled tomatoes and marketable tomatoes were measured by weight. One treatment
(replicate II) for the calendar-based strategy was incorrectly planted with the wrong cultivar, and the
associated data was disregarded for the trial and this analysis. In addition, multiple plants were
removed because of bacterial wilt, and the harvest calculations (i.e., weight of culled and marketable
tomatoes per acre) were adjusted accordingly.

Table 1 summarizes the area under the disease progress curve (AUDPC, a quantitative summary
of disease severity of late blight over time), marketable weight, cull weight, and the total weight for
the susceptible cultivar (Mountain Fresh Plus). The results show that using the DSS-based strategy
improved the marketable tomato weight by 14.8% in 2015 for the susceptible cultivar (Mountain
Fresh Plus), relative to the calendar-based strategy. These marketable weight data were used as a
guide to motivate the sensitivity analysis with respect to tomato yields when conducting economic
analyses. Ideally, a model that links the disease severity, weather conditions, and yield should be
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used to predict the tomato yield or tomato yield reductions. However, no such model exists in the
literature. The interaction among several factors influencing the tomato yield increases the complexity
in developing such a model. These factors include the influence of weather, the impact of disease
severity, and the input usage on the tomato yield. To compensate for the fact that no such model exists,
we conducted a sensitivity analysis for the tomato yield so as to examine the economic benefits of
BlightPro for tomato growers. The sensitivity analysis assumed that the DSS-based strategy would
improve the tomato yield by 0%, 5%, 10%, or 15%, relative to the calendar-based strategy.
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Figure 1. Schematic representation of four replications used in the tomato field trials, as follows:
1—represents the unsprayed control; 2—represents the calendar-based strategy; 3—represents the
BlightPro Decision Support System based strategy (DSS-based strategy).

Table 1. 2015 field trial results for Mountain Fresh Plus indicating disease severity and weight
(Tons/A). DSS—BlightPro Decision Support System based strategy; Calendar—calendar-based strategy;
Control—no fungicide application; AUDPC—area under the disease progress curve.

Rep Treatment AUDPC Wt. Marketable Wt. Cull Wt. Total

I Control 4037.39 2.49 5.36 7.85
I Calendar 43.38 14.30 2.72 17.02
I DSS 6.74 15.46 3.33 18.79
II Control 3866.27 0.71 5.41 6.12
II Calendar X X X X
II DSS 112.31 16.18 2.36 18.54
III Control 3378.66 2.26 5.11 7.37
III Calendar 6.74 13.16 2.48 13.16
III DSS 6.92 19.05 4.07 20.21
IV Control 4100.21 1.39 4.27 5.66
IV Calendar 33.88 11.14 4.63 15.78
IV DSS 6.74 9.81 4.01 13.82

2.2. Computer Smiluation Experiments and Economic Data

To estimate the economic benefits of the DSS-based strategy for tomato production, the distributions
of the net return per acre need to be generated, which is the gross revenue minus the costs of fungicide and
its application. These distributions are generated by first conducting computer simulation experiments,
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which use 14 years of meteorological data (2000–2013), recorded from 25 locations (13 locations in
New York and 12 locations in North Carolina). The set of computer simulations used for the economic
analysis is a subset of the data generated by Small et al. [13]. The original computer simulated data set
included 59 locations in the United States. This was reduced to 25 locations for inclusion in this study,
because of a lack of availability of the tomato price and the yield information for the other locations.

Each year’s weather conditions at each location created a unique tomato growing environment.
In total, 316 tomato growing environments were included after removing those years with more
than 2% missing weather data during the growing season. The results were generated for three
disease-resistance categories with a different susceptibility to late blight, as follows: susceptible,
moderately susceptible, and moderately resistant. Each disease-resistance category includes several
different tomato varieties. Three methods of fungicide scheduling throughout the production season
were compared, including a calendar-based strategy (seven-day spray schedule), a DSS-based strategy
(BlightPro Decision Support System based strategy), and a no spray strategy (no fungicide application).
The initiation date of the late blight disease was assumed to initiate randomly during the growing
season with a 0.001% disease severity (one lesion per 10 plants). This reflects the random nature of
the late blight initiation over the course of a production season for a field that starts the season being
disease-free, with tomato crops becoming infected by inoculum from external sources (e.g., infected
farm/vegetable gardens) in the surrounding environment. In total, 2844 simulations (316 environments
× three disease-resistance categories × three methods of fungicide scheduling) were used to compare
the DSS-based strategy with the calendar-based strategy for tomato production. For a comprehensive
discussion and illustration of the difference between the DSS-based strategy and the calendar-based
strategy, see Small et al. [13] and Liu et al. [14].

Figure 2 illustrates that the process of the computer simulation experiments and the data
generating process for the economic analysis. For a comprehensive discussion of the computer
simulation experiments, see Small et al. [13]. The following common parameters were used. The length
of the season was 110 days (Table 2). All diseases other than late blight, and the effects of other
pests, weeds, nutrients, and heat or frost shock, were assumed to have an equal effect on the tomato
production process among the calendar-based strategy and the DSS-based strategy. The growers
were also assumed to be able to make fungicide applications according to both the DSS-based and
calendar-based strategy. In reality, fungicide applications may be delayed as weather conditions,
such as precipitation, may not allow for growers to get into the field to apply fungicides.

Table 2. Tomato growth period.

State Plant Date Harvest Date

North Carolina 26 March 27 July
New York 15 May 15 September

To estimate the economic benefits of the DSS-based strategy, the net return per acre, which is
the gross revenue minus the costs of the fungicide and its application, was compared for each of the
25 locations within a 14-year period. The tomato yield is simulated to estimate gross return per acre.
The tomato yields per acre from 2000 to 2013 were estimated using historical state-level average fresh
market tomato yield data obtained from the USDA NASS database [9]. The tomato yield per acre for
the calendar-based strategy was assumed to be equal to the historical state-level average fresh market
tomato yield from 2000 to 2013. The tomato yield per acre for the DSS-based strategy was calculated
for each year, y, and each state, s, as follows:

Tomato yields,y,DSS = average tomato yields,y × (1 + Percentage o f yield improvement) (1)

From the 2015 tomato field trials, the tomato marketable weight improved by 14.8% on average for
the DSS-based strategy when compared with the calendar-based strategy. The sensitivity analyses were
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conducted with the assumption that the DSS-based strategy could improve the tomato yield by 0%,
5%, 10%, or 15%, compared with the calendar-based strategy. For each year at a given location, the net
return per acre for each disease-resistance category was equal to the gross revenue (price × yield) less
the cost of the fungicide applications, including materials and other application costs. The net return
per acre was computed as follows:

Net return per acrel,y,i = Tomato prices,y × Tomato yields,y,i
−
(

Fungicide costy + application costy
)
× number o f applicationl,y,i

(2)

where l stands for each of the 25 sites; y stands for a specific year; i refers to the calendar-based or
the DSS-based strategy; and s stands for the state (New York or North Carolina) in which the site, l,
is located. The fresh market tomato prices from 2000 to 2013 were obtained from USDA NASS [9].
The average yield and price were assumed to be the same across the different cultivar resistance
levels. A protectant fungicide with an active ingredient, chlorothalonil, was applied at 1.34 kg a.i./ha
(equivalent to 1.5 pints per acre) for each application. The fungicide price was obtained from a local
agricultural chemical distributor on Long Island, by Dr. M.T. McGrath in April 2013 [15]. The fungicide
cost per acre for each application in 2013 is $8.63. The application cost ($6.58/acre/application) comes
from Lazarus [16], which is the total cost per acre of a self-propelled boom sprayer, including fuel,
lubricants, repairs and maintenance, labor, electricity, depreciation (depreciation is both time-related
and use related), and overhead costs (interest, insurance, and housing). The USDA Prices Paid Indices
(agricultural chemical and machinery indices) were used to adjust the fungicide price and application
cost in 2013 to the nominal prices in previous years.
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2.3. Stochastic Dominance and Stochastic Efficiency

The weather conditions in different years influence the risk for late blight infection, which results
in uncertainties and volatility in the net returns for decision makers. Recognizing this, we incorporated
the uncertainty and producers’ risk attitudes into the decision-making framework. Individual risk
attitudes can be used to rank alternative decisions [17]. Producers with different degrees of risk-aversion
are likely to have different preferences among alternative strategies [18]. In this research, we compared
mutually exclusive decisions faced by tomato growers for alternative fungicide spray strategies
(i.e., the calendar-based strategy or the DSS-based strategy). Stochastic dominance, stochastic dominance
with respect to a function, and stochastic efficiency with respect to a function (SERF), were used
to rank alternative fungicide application strategies, using net return per acre for each location.
These methods can help farmers to better understand their risk preferences and choices under price,
yield, or weather uncertainty.

Stochastic dominance methods [19–22] were used to identify the most risk efficient strategy
among the DSS-based and calendar-based strategies. These methods compare the entire cumulative
distribution function of the net return per acre for the DSS-based and calendar-based strategies
under the different ranges of the risk aversion coefficient of a decision maker. First-degree stochastic
dominance (FSD) compares the risky alternatives faced by decision makers who have positive marginal
utility [19], which implies that decision makers prefer more wealth (or net return in this case) to less.
There is no restriction on the decision makers’ risk aversion coefficient [19], which means that the
risk aversion coefficient ranges from negative infinity to positive infinity. Second-degree stochastic
dominance (SSD) assumes that decision makers are risk averse [19]. Risk averse decision makers prefer
a higher average income, lower variance, and less downside risk. The risk aversion coefficient for
SSD ranges from zero to positive infinity. Stochastic dominance with respect to a function (SDRF)
ranks risky alternatives based on assumed lower and upper bounds of decision makers’ absolute
risk aversion levels [23,24]. It does not impose any restrictions on the width of the relevant absolute
risk aversion interval [24], which allows the lower and upper bounds on the absolute risk aversion
interval to vary among studies [24]. First- and second-degree stochastic dominance can be considered
as special cases of SDRF [24].

Information pertaining to the absolute risk aversion coefficients is required for SDRF analysis.
According to Raskin and Cochran [25], this information can be obtained by dividing the relative risk
aversion coefficients by the location-specific average net return per acre. The relative risk aversion
levels used for stochastic dominance with respect to a function, include slightly risk-averse (0–1.0),
moderately risk-averse (1.0–3.0), and strongly risk-averse (3.0–4.0). The equation for the transformation
of relative risk aversion and absolute risk aversion is as follows:

ra,l = rr/wl (3)

where ra,l stands for the absolute risk aversion for a specific location, rr stands for the relative risk
aversion, and wl stands for the average net return per acre for each location of both DSS-based and
calendar-based strategies.

The stochastic efficiency with respect to a function [26] was used to evaluate the economic benefits
of adopting BlightPro under different risk aversion levels. Stochastic efficiency with respect to a
function was first used to compute the certainty equivalents (CEs) of the net return per acre for each
fungicide application strategy. The CE is the risk adjusted value of the net return per acre for each
fungicide application strategy. It is also the guaranteed amount of money that a decision maker would
be willing to accept instead of taking the risky alternative [27]. Thus, risky alternatives with higher CEs
are preferred to alternatives with lower CEs [26,28,29]. Stochastic efficiency with respect to a function
was also used to identify the utility weighted risk premium (RP), which can also be interpreted as the
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value of information provided by BlightPro. Given the risk aversion level, the utility weighted risk
premium (RP) can be calculated using the following equation:

RPDSS,Calendar,rr = CEDSS,rr − CECalendar,rr (4)

A positive RP means that a tomato grower should prefer to use BlightPro rather than the
calendar-based strategy. The RP could also be viewed as the value of information provided by
BlightPro for the tomato growers.

For the SERF analysis, a utility function needs to be specified. Schumann et al. [30] found
that the efficient set identified by different utility functions can be similar. In this study, the power
utility function was used to calculate the CEs for the alternative fungicide application strategies.
The functional form of the power utility is as follows: U(x) = x1−r

1−r f or r 6= 1; U(x) = ln(x) f or r = 1.
The power utility function is often referred to as the constant relative risk aversion utility function,
which has been widely used for modeling the risk aversion of decision makers [31]. In addition to the
constant relative risk aversion, this utility function exhibits a decreasing absolute risk aversion as an
individual’s wealth increases. Namely, as an individual’s wealth increases, that individual is willing to
take more risks. It is a commonly assumed characteristic of people’s risk aversion. The relative risk
aversion levels, rr, used for stochastic efficiency with respect to a function, ranged from 0 (risk neutral)
to 4 (strongly risk averse) [32].

The stochastic dominance and stochastic efficiency methods can be adapted to a wide range of
individual decision making processes [19,33]. These approaches have been applied to evaluate various
alternative decisions, such as beef farm insurance policies [27], contract options [34], tillage options [35],
irrigation strategies [23], growing-finishing swine diets [36], cotton planting acreage [37], crop rotation
and weed control methods [38], farming machinery selection [39], postharvest marketing strategies [40],
policy impacts [41], and integrated pest and disease management strategies [3,14,42–45].

The Simulation and Econometrics to Analyze Risk (SIMETAR) software was used to conduct the
stochastic dominance and stochastic efficiency with respect to a function analysis. These analyses were
conducted separately for each location, in an Excel file. Each Excel file summarized the location-specific
distributions of the net return per acre for the DSS-based and calendar-based strategies. The net return
per acre distributions between the DSS-based strategy and the calendar-based strategy were compared
so as to identify the preferred strategy. The same analyses were repeated and conducted 300 times using
300 Excel files (25 locations × 3 disease-resistance categories × 4 yield improvement assumptions).

3. Results

3.1. Fungicide Applications and Disease Rating

The effectiveness in managing the disease by adopting BlightPro is consistent with the discussion
demonstrated by Small et al. [13] and Liu et al. [14]. For the susceptible cultivars, BlightPro recommends
a higher number of fungicide applications throughout the season than the calendar-based strategy,
but also exhibits higher levels of disease suppression. For the moderately susceptible cultivars,
BlightPro recommends fewer fungicide applications, but is still able to achieve a higher level of disease
suppression. This suggests that BlightPro improves the efficiency of fungicide usage, allows for
more effective disease suppression, reduces the overall cost of fungicide application, and improves
sustainability. As expected for the moderately resistant cultivars, the calendar-based strategy achieves
high levels of disease suppression with lower fungicide use efficiency, relative to the DSS-based
strategy [13]. BlightPro recommends fewer fungicide applications and lowers the cost of fungicide
applications for moderately resistant cultivars.

Figure 3 illustrates the average number of fungicide applications for the DSS-based strategy and
the calendar-based strategy. The average number of fungicide applications for the DSS-based strategy
decreases, when the disease-resistance level increases. The average number of fungicide applications
for the DSS-based strategy was 13.3, 9.2, and 7.1, for the susceptible, moderately susceptible,
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and moderately resistant cultivars, respectively, which represent a 21% increase, a 16% decrease,
and a 35% decrease in average number of fungicide applications, relative to the calendar-based
strategy (11 sprays). The prevalence of favorable weather for late blight also influences the number
of recommended sprays by BlightPro [13]. Higher application rates are associated with the years
when the weather is more favorable for disease development [13]. In addition, the average number
of fungicide applications varies by state, with New York requiring a higher number of fungicide
applications throughout the season than North Carolina. For the susceptible cultivars, the annual
average number of recommended fungicide applications is 12.6 in North Carolina and 14.1 in New York.
The average number of fungicide applications is 8.8 in North Carolina and 9.7 in New York for
moderately susceptible cultivars. For moderately resistant cultivars, the average number of fungicide
applications is 6.8 in North Carolina and 7.4 in New York.
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Figure 3. The number of fungicide applications for 25 locations over 14 years (2000 to 2013). The bar
represents the mean number of fungicide applications. Each point represents the number of fungicide
applications for a given year and location.

Figure 4 illustrates the AUDPC for the DSS-based strategy, the calendar-based strategy, and the
unsprayed control. The use of fungicide dramatically reduced the late blight disease severity when
compared with the unsprayed control. The average AUDPC for the unsprayed control was 1688 for
the susceptible cultivars, 1429 for the moderately susceptible cultivars, and 570 for the moderately
resistant cultivars. The average AUDPC for the DSS-based strategy was 91 for the susceptible cultivars,
225 for the moderately susceptible cultivars, and 26 for moderately resistant cultivars. The average
AUDPC for the calendar-based strategy was 402 for the susceptible cultivars, 243 for the moderately
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susceptible cultivars, and 16 for the moderately resistant cultivars. The DSS-based method decreased
the average level of disease as well as the variance in disease severity for the susceptible cultivars and
the moderately susceptible cultivars, compared with the calendar-based strategy. The DSS-based
strategy uses more judicious fungicide applications, which improves the sustainability from an
environmental perspective.Sustainability 2018, 10, x FOR PEER REVIEW  10 of 19 
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3.2. Yield and Net Return Per Acre

Table 3 presents the summary statistics for the average tomato yield and net return per acre for
the calendar-based strategy and DSS-based strategy, with four different levels of yield improvement
assumptions. The average tomato yield without yield improvement for the DSS-based strategy was
245 cwt/acre for both strategies. The average tomato yield for the DSS-based strategy increases
to 257.3 cwt/acre, 269.5 cwt/acre, and 281.8 cwt/acre with 5%, 10%, and 15% yield improvements,
respectively. Without yield differences between the DSS-based and calendar-based strategy, the average
net return per acre for the DSS-based strategy is $28 smaller than that of the calendar-based strategy
for the susceptible cultivars. This is due to the increased number of fungicide applications resulting in
the higher cost of fungicide applications for the DSS-based strategy compared with the calendar-based
strategy throughout the season. For the moderately susceptible and moderately resistant cultivars, the
DSS-based strategy recommended fewer fungicide applications. As a result, the average net return
per acre for the DSS-based strategy is $22 and $48 higher than that of the calendar-based strategy for
moderately susceptible and moderately resistant cultivars, respectively.
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Table 3. Summary statistics for tomato yield and tomato revenue (316 observations). S.D—standard deviation.

Calendar
DSS Yield Improvement Percentage

0% 5% 10% 15%

Item Mean S.D Min Max Mean S.D Min Max Mean S.D. Min Max Mean S.D Min Max Mean S.D Min Max

Susceptible Cultivars
Tomato Yield (cwt/acre) 245.0 85.4 140.0 440.0 245.0 85.4 140.0 440.0 257.3 89.7 147.0 462.0 269.5 93.9 154.0 484.0 281.8 98.2 161.0 506.0
Net Return per Acre ($/acre) 10,926 2572 6450 16,685 10,898 2566 6395 16,774 11,451 2696 6725 17,616 12,004 2825 7055 18,459 12,557 2954 7385 19,301

Moderately Susceptible Cultivars
Tomato Yield (cwt/acre) 245.0 85.4 140.0 440.0 245.0 85.4 140.0 440.0 257.3 89.7 147.0 462.0 269.5 93.9 154.0 484.0 281.8 98.2 161.0 506.0
Net Return per Acre ($/acre) 10,926 2572 6450 16,685 10,948 2571 6464 16,789 11,501 2700 6794 17,631 12,054 2829 7124 18,474 12,607 2958 7454 19,316

Moderately Resistant Cultivars
Tomato Yield (cwt/acre) 245.0 85.4 140.0 440.0 245.0 85.4 140.0 440.0 257.3 89.7 147.0 462.0 269.5 93.9 154.0 484.0 281.8 98.2 161.0 506.0
Net Return per Acre ($/acre) 10926 2572 6450 16,685 10,974 2574 6491 16,804 11,527 2703 6821 17,646 12,080 2832 7151 18,488 12,633 2961 7481 19,331
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With a 5% yield improvement or higher for the DSS-based strategy, the average net return per acre
was higher for the DSS-based strategy than the calendar-based strategy. With high value crops like
tomato, a small percentage increase in the yield will quickly improve the economic profitability
of the farm. The results from the field trial at the Mountain Horticultural Crops Research and
Extension Center demonstrate that the marketable weight for tomato could improve by 14.8% using
the DSS-based strategy. With a 5% yield improvement for the DSS-based strategy, the average net
return per acre is $526, $575, and $601 higher than calendar-based strategy for the susceptible cultivars,
moderately susceptible cultivars, and moderately resistant cultivars, respectively. With a 10% yield
improvement for the DSS-based strategy, the average net return per acre is $1078, $1128, and $1154
higher than calendar-based strategy for the susceptible cultivars, moderately susceptible cultivars,
and moderately resistant cultivars, respectively. With a 15% yield improvement for the DSS-based
strategy, the average net return per acre is $1631, $1681, and $1707 higher than the calendar-based
strategy for the susceptible cultivars, moderately susceptible cultivars, and moderately resistant
cultivars, respectively.

3.3. Stochastic Dominance Results

The stochastic dominance approaches use the cumulative distribution functions of the net returns
per acre for each of the 25 locations in order to identify the dominant strategy for each location
between the DSS-based strategy and the calendar-based strategy. The identified dominant strategy in
the risk efficient set was used to evaluate the decision makers’ preferences between the DSS-based
and the calendar-based strategies. The dominant strategy in the risk efficient set is the preferred
strategy by decision makers. Stochastic dominance approaches compare the distributions of the net
returns per acre of the DSS-based strategy and the calendar-based strategy, to identify the dominant
strategy. Three possible efficient sets include the calendar-based strategy, the DSS-based strategy,
or both. To illustrate this, for a certain location, if the DSS-based strategy dominates the calendar-based
strategy, DSS is in the risk efficient set for this location, and vice versa for the calendar-based strategy.
If neither strategy dominates the other, then both strategies are in the risk efficient set for that location.
First degree stochastic dominance (FSD), second degree stochastic dominance (SSD), and stochastic
dominance with respect to a function (SDRF), are used to identify the risk efficient sets. In summary,
except for the case of the susceptible cultivars with no yield difference between the two strategies,
the DSS-based strategy is the preferred fungicide application strategy by decision makers. The results
showed that under the assumption of no yield improvement for the DSS-based strategy, the growers
who grew more late blight resistant tomato cultivars would be more willing to adopt BlightPro.
When there were 5%, 10%, and 15% yield improvements for the DSS-based strategy, all of the growers
would be willing to adopt the DSS-based strategy across the slightly, moderately, and strongly risk
aversion levels, respectively.

Table 4 summarizes the results of the stochastic dominance analysis with a 0% yield improvement
for the DSS-based strategy. This table presents the percentage of locations among the 25 locations
that appear in each of the three possible efficient sets. Under the assumption of no yield difference
between the two alternative strategies, the results were driven by the number of fungicide applications
throughout the season. The strategy that requires the lowest number of fungicide applications is
preferred. The calendar-based strategy is preferred for the susceptible cultivars for all of the stochastic
dominance approaches. For the susceptible cultivar, 8% of the 25 locations prefer the DSS-based
strategy over the calendar-based strategy for the slightly risk-averse growers, moderately risk-averse
growers, and strongly risk-averse growers, using the SDRF method. The DSS-based strategy is strongly
preferred for the moderately susceptible and moderate resistant cultivars for all of the stochastic
dominance approaches. For the moderately susceptible cultivars, 84% of the 25 locations prefer the
DSS-based strategy for the three risk aversion levels (slightly risk-averse, moderately risk-averse,
and strongly risk-averse). For the moderately resistant cultivars, all of the 25 locations prefer the
DSS-based strategy for the three risk aversion levels (slightly risk-averse, moderately risk-averse,



Sustainability 2018, 10, 3108 13 of 19

and strongly risk-averse). Under the assumption of a 5%, 10%, and 15% yield improvement for the
DSS-based strategy, the stochastic dominance analyses (FSD, SSD, and SDRF) shows that all of the
growers in the 25 locations would prefer the DSS-based strategy over the calendar-based strategy for
all of the risk aversion levels and disease-resistance categories.

Table 4. Percentage of locations in the risk efficient set with 0% yield improvement for the DSS-based
strategy *.

Item Calendar DSS Both

Susceptible Cultivars
FSD 28.0% 0.0% 72.0%
SSD 64.0% 16.0% 20.0%
SDRF

Slightly Risk-Averse 92.0% 8.0% 0.0%
Moderately Risk-Averse 92.0% 8.0% 0.0%
Strongly Risk-Averse 84.0% 8.0% 8.0%

Moderately Susceptible Cultivars
FSD 4.0% 32.0% 64.0%
SSD 8.0% 84.0% 8.0%
SDRF

Slightly Risk-Averse 16.0% 84.0% 0.0%
Moderately Risk-Averse 16.0% 84.0% 0.0%
Strongly Risk-Averse 16.0% 84.0% 0.0%

Moderately Resistant Cultivars
FSD 0.0% 100.0% 0.0%
SSD 0.0% 100.0% 0.0%
SDRF

Slightly Risk-Averse 0.0% 100.0% 0.0%
Moderately Risk-Averse 0.0% 100.0% 0.0%
Strongly Risk-Averse 0.0% 100.0% 0.0%

* DSS is BlightPro Decision Support System. FSD stands for first-degree stochastic dominance. SSD stands for
second-degree stochastic dominance. SDRF stands for stochastic dominance with respect to a function.

3.4. Stochastic Efficiency Results

In order to identify the value of BlightPro, we compared the average certainty equivalents (CEs)
and risk premiums (RPs) of the DSS-based and calendar-based strategies using SERF. The power
utility function was used for conducting the SERF analysis. We also conducted robustness checks
by using the negative exponential function for the SERF analysis. The results are consistent across
the two different utility functions. The stochastic efficiency with respect to the function results are
location specific. Figures 5 and 6 illustrate examples of the SERF analysis by comparing the CEs
and RPs between the calendar-based and the DSS-based strategies for one location. In this example,
the DSS-based strategy results in higher CEs than the calendar-based strategy. Thus, the DSS-based
strategy is the preferred strategy for the range of a relative risk aversion coefficient between 0 and 4.
Figure 6 demonstrated the utility weighted risk premium (Equation (4)), which is the difference in CEs
between the two strategies. This example also demonstrated that the RPs decreased as the relative risk
aversion coefficient increases, which means that BlightPro is viewed as more valuable by the less risk
aversion individuals.
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Figure 5. Certainty equivalent as a function of risk aversion for alternative strategies at one location in
New York for susceptible cultivars.
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The value of information created by BlightPro varies by location, the disease-resistance category
of the tomato cultivar, producer risk aversion level, and the percentage of yield improvement for
the DSS-based strategy. Table 5 summarizes the average CEs and RPs using relative risk aversion
levels of 0, 1, 3, and 4 for each disease-resistance category at the 25 locations, assuming that the yields
are the same for the DSS-based and calendar-based strategies. Compared with the calendar-based
strategy, the DSS-based strategy exhibits lower CEs for the susceptible cultivars and higher CEs for
the moderately susceptible cultivars and the moderately resistant cultivars, when assuming that the
yields were the same between the two strategies. The average risk premium is −$28 per acre for the
susceptible cultivars, $21 to $22 per acre for the moderately susceptible cultivars, and $48 per acre for
the moderately resistant cultivars. These values represent the value created by BlightPro. The results
show that under the assumption of no yield improvement for the DSS-based strategy, the growers who
grow late blight resistant tomato cultivars would benefit from adopting BlightPro.
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Table 5. Average certainty equivalent of net return acre with 0% yield improvement for DSS-based strategy.

Item
Spray Schedule Risk Premium

Calendar DSS DSS over Calendar

Susceptible Cultivars
r = 0 $10,974 $10,946 $(28)
r = 1 $10,855 $10,827 $(28)
r = 3 $10,636 $10,608 $(28)
r = 4 $10,536 $10,508 $(28)

Moderately Susceptible Cultivars
r = 0 $10,974 $10,995 $21
r = 1 $10,855 $10,876 $21
r = 3 $10,637 $10,658 $21
r = 4 $10,536 $10,558 $22

Moderately Resistant Cultivars
r = 0 $10,974 $11,022 $48
r = 1 $10,855 $10,903 $48
r = 3 $10,637 $10,684 $48
r = 4 $10,537 $10,584 $48

Note: r is the relative risk aversion coefficient. A power utility function is assumed. Numbers in parentheses means
negative value.

Table 6 shows the RPs for the DSS-based strategy with a 5%, 10%, and 15% yield improvement for
the DSS-based strategy. The benefit of the DSS-based strategy for less risk-averse growers is larger
than that for the more risk-averse growers. Also, for the growers planting less resistant cultivars,
the benefit is generally less than it is for growers with more disease-resistant cultivars. With a 5%
yield improvement, the benefits for the growers in adopting BlightPro range from $496 to $527 for
the susceptible cultivars, $545 to $576 for the moderately susceptible cultivars, and $571 to $603 for
the moderately resistant cultivars. With a 10% yield improvement, the benefits range from $1020 to
$1082 for the susceptible cultivars, $1069 to $1132 for the moderately susceptible cultivars, and $1095
to $1158 for the moderately resistant cultivars. With a 15% yield improvement, the benefits range from
$1543 to $1638 for the susceptible cultivars, $1593 to $1687 for the moderately susceptible cultivars,
and $1619 to $1714 for the moderately resistant cultivars.

Table 6. Risk premiums of the DSS-based strategy with 5%, 10%, and 15% yield improvement for the
DSS-based Strategy.

Item
Risk Premium: DSS over 7-Day

5% 10% 15%

Susceptible Cultivars
r = 0 $527 $1082 $1638
r = 1 $518 $1065 $1611
r = 3 $503 $1034 $1564
r = 4 $496 $1020 $1543

Moderately Susceptible Cultivars
r = 0 $576 $1132 $1687
r = 1 $568 $1114 $1661
r = 3 $552 $1083 $1614
r = 4 $545 $1069 $1593

Moderately Resistant Cultivars
r = 0 $603 $1158 $1714
r = 1 $594 $1141 $1687
r = 3 $578 $1109 $1640
r = 4 $571 $1095 $1619
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4. Discussion

This paper investigates the economic benefit of adopting precision agriculture technology in
order to manage late blight disease. We compare a precision agriculture strategy with the traditional,
calendar-based practices for scheduling fungicide applications, in terms of productivity, profitability,
and risk associated with income fluctuation. The data from the computer simulation experiments
and tomato field trials are used to examine the economic benefits of adopting precision agriculture
technology for tomato production. Our study builds on the work conducted by Small et al. [13].
By overlaying the economic and risk analyses onto their results, we estimate the economic incentives
for individual decision makers to adopt precision agriculture for tomato production.

The improvement in the usage of fungicide has environmental, social, and economic benefits
pertaining to sustainability. Consistent with the findings of Small et al. [13] and Liu et al. [14]
for potato production, BlightPro increases the effectiveness in managing late blight for tomato
production. It recommends increased fungicide applications for susceptible cultivars, and fewer
fungicide applications for moderately susceptible cultivars and moderately resistant cultivars for
tomato production. Compared with the calendar-based strategy (11 sprays), BlightPro recommends a
21% increase, a 16% decrease, and a 35% decrease in the average number of fungicide applications
for the susceptible, moderately susceptible, and moderately resistant cultivars, respectively. It is
also more effective in managing tomato late blight disease for the susceptible cultivars and the
moderately susceptible cultivars. BlightPro also recommends fungicide applications in response to
prevailing weather conditions that are favorable for the development of late blight [13]. A higher
number of applications are associated the in years when the weather is more favorable for disease
development [13]. One of the benefits of a more judicious application approval is that it delays the
development of late blight resistance to fungicide, thus increasing the sustainability of the treatment.
The reduced number of fungicide application for more disease resistance cultivars also reduced the
working hours for labor, which improves social sustainability. BlightPro improves the efficiency of
fungicide usage, allowing for more effective disease suppression, reducing fungicide application,
and improving sustainability from an environmental perspective.

Using stochastic dominance with respect to a function, we identify the risk-efficient and preferred
fungicide scheduling strategies between the calendar-based and the DSS-based strategy. In addition,
we evaluate the economic benefits associated with scheduling fungicide applications by adopting
precision agriculture technology using stochastic efficiency with respect to a function. A tomato field
trial, conducted at Mills River, North Carolina, demonstrated that the marketable weight of tomatoes
could improve by 14.8% when using BlightPro. Sensitivity analyses are conducted with various
levels of yield improvement (0%, 5%, 10%, and 15%) assumptions corresponding to the adoption
of BlightPro. Except for the case of susceptible cultivars with no yield difference between the two
strategies, the DSS-based strategy is the preferred fungicide application strategy by decision makers.
Also, for the growers planting less resistant cultivars, the benefit is generally less than it is for the
growers with more disease-resistant cultivars.

Under the assumption of no yield difference between the DSS-based and the calendar-based
strategy, the calendar-based strategy is preferred for susceptible cultivars, and the DSS-based strategy
is preferred for the moderately susceptible cultivars and moderately resistant cultivars. The value
of BlightPro ranges from −$28 to $48 per acre. With a 5%, 10%, and 15% yield improvement for
the DSS-based strategy, the DSS-based strategy is strongly preferred for all 25 locations. This means
that all growers would be willing to adopt the DSS-based strategy across the slightly, moderately,
and strongly risk averse levels. Depending on the percentage of the yield improvement associated with
the DSS-based strategy, the value of BlightPro ranges from $496 to $1714 per acre. These improvements
in profitability increase the economic sustainability of tomato farms.

This research provides a method to evaluate and reveal the economic benefits of adopting
BlightPro for tomato growers. Knowing the value of the information provided by BlightPro can help
improve the adoption rate of this precision agriculture technology. This would help improve the
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late blight management actions taken by the tomato growers to manage the spread of the disease
and limit the potential losses. The economic evaluation of BlightPro presented here was hindered
by the difficulty in determining the relationship between the late blight and tomato yield. The yield
improvement assumptions in this paper shift the distribution of the tomato marketable yield toward
the higher end for all weather conditions. Further research is needed to identify the relationship
between late blight disease and tomato yield or yield loss, which would improve the analysis in
evaluating the economic impact of BlightPro for tomato production.
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